Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y=1+ (1/x) +(1/x2)+ (1/x3)+.......... to ∞ with |x|>1 then (dy/dx)=
Q. If
y
=
1
+
x
1
+
x
2
1
+
x
3
1
+
..........
to
∞
with
∣
x
∣
>
1
then
d
x
d
y
=
3206
193
KCET
KCET 2006
Continuity and Differentiability
Report Error
A
x
2
−
y
2
37%
B
x
2
y
2
27%
C
x
2
y
2
19%
D
y
2
x
2
18%
Solution:
We have
y
=
1
+
x
1
+
x
2
1
+
x
3
1
+
…
y
=
1
−
x
1
1
(GP series)
=
x
−
1
x
…
(
i
)
On differentiating, we get
d
x
d
y
=
(
1
−
x
)
2
(
x
−
1
)
−
x
(
+
1
)
=
−
(
1
−
x
)
2
1
=
−
x
2
y
2
(From (i))