Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (xdy/dx)+2y=ln x, then e2 y(e)-y(1)=
Q. If
d
x
x
d
y
+
2
y
=
l
n
x
, then
e
2
y
(
e
)
−
y
(
1
)
=
2064
167
Differential Equations
Report Error
A
2
e
2
+
1
10%
B
3
e
2
+
1
48%
C
4
e
2
+
1
29%
D
e
2
+
1
14%
Solution:
d
x
d
y
+
x
2
y
=
x
l
n
x
.
It is linear differential equation with
I
.
F
.
=
exp
∫
x
2
d
x
=
x
2
∴
Solution is,
y
x
2
=
∫
x
2
⋅
x
l
n
x
d
x
=
∫
x
l
n
x
d
x
⇒
y
x
2
=
2
x
2
l
n
x
−
4
x
2
+
c
∴
x
=
e
⇒
e
2
y
(
e
)
=
2
e
2
−
4
e
2
+
c
=
4
e
2
+
c
and
x
=
1
⇒
y
(
1
)
=
−
4
1
+
c
So,
e
2
y
(
e
)
−
y
(
1
)
=
4
e
2
+
1
.