Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x, y, z are non-zero real numbers and |1+x&1&1 1+y&1+2y&1 1+z&1+z&1+3z|=0, then ((1/x)+(1/y)+(1/z)) is equal to .
Q. If
x
,
y
,
z
are non-zero real numbers and
∣
∣
1
+
x
1
+
y
1
+
z
1
1
+
2
y
1
+
z
1
1
1
+
3
z
∣
∣
=
0
, then
(
x
1
+
y
1
+
z
1
)
is equal to _____.
1692
218
Determinants
Report Error
Answer:
-3
Solution:
Δ
=
∣
∣
1
+
x
1
+
y
1
+
z
1
1
+
2
y
1
+
z
1
1
1
+
3
z
∣
∣
=
0
Applying
C
1
→
C
1
−
C
3
,
C
2
→
C
2
−
C
3
we get
Δ
=
∣
∣
x
y
−
2
z
0
2
y
−
2
z
1
1
1
+
3
z
∣
∣
=
0
∴
[
2
x
y
+
6
z
x
y
+
4
yz
+
2
z
x
−
2
yz
]
=
0
∴
2
(
x
yz
)
[
x
1
+
y
1
+
z
1
+
3
]
=
0
∴
(
x
1
+
y
1
+
z
1
)
=
−
3