Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x , y , z are in arithmetic progression with common difference d , x ≠3 d, and the determinant of the matrix [ beginarrayccc3 4 √2 x 4 5 √2 y 5 k z endarray]=0 is zero then the value of k 2 is
Q. If
x
,
y
,
z
are in arithmetic progression with common difference
d
,
x
î€
=
3
d
, and the determinant of the matrix
⎣
⎡
​
3
4
5
​
4
2
​
5
2
​
k
​
x
y
z
​
⎦
⎤
​
=
0
is zero then the value of
k
2
is
2932
199
JEE Main
JEE Main 2021
Determinants
Report Error
A
72
14%
B
12
57%
C
36
14%
D
6
14%
Solution:
∣
∣
​
3
4
5
​
4
2
​
5
2
​
k
​
x
y
z
​
∣
∣
​
=
o
R
2
​
→
R
1
​
+
R
3
​
−
2
R
2
​
⇒
∣
∣
​
3
0
5
​
4
2
​
k
−
6
2
​
k
​
x
0
z
​
∣
∣
​
=
0
⇒
(
k
−
6
2
​
)
(
3
z
−
5
x
)
=
0
if
3
z
−
5
x
=
0
⇒
3
(
x
+
2
d
)
−
5
x
=
0
⇒
x
=
3
d
(Not possible)
⇒
k
=
6
2
​
⇒
k
2
=
72