Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x, y, z are in A.P., then (1/√y + √z), (1/√z +√x), (1/√x+√y) are in
Q. If
x
,
y
,
z
are in
A
.
P
., then
y
+
z
1
,
z
+
x
1
,
x
+
y
1
are in
2171
257
Sequences and Series
Report Error
A
A
.
P
.
33%
B
G
.
P
.
33%
C
A
.
G
.
P
.
13%
D
no definite sequence
20%
Solution:
z
+
x
1
−
y
+
z
1
=
(
z
+
x
)
(
y
+
z
)
y
−
x
=
(
x
+
y
)
(
z
+
x
)
(
y
+
z
)
(
y
+
x
)
(
y
−
x
)
=
(
x
+
y
)
(
z
+
x
)
(
y
+
z
)
y
−
x
Similarly,
x
+
y
1
−
z
+
x
1
=
(
x
+
y
)
(
z
+
x
)
(
y
+
z
)
z
−
y
Since,
x
,
y
,
z
are in
A
.
P
.
⇒
y
−
x
=
z
−
y
⇒
y
+
z
1
,
z
+
x
1
,
x
+
y
1
are in
A
.
P
.