Given, x+y=tan−1y
On differentiating w.r.t. x, we get 1+dxdy=1+y21⋅dxdy ⇒(1−1+y21)dxdy=−1 ⇒1+y2y2dxdy=−1 ⇒dxdy=−(y21+y2)=−1−y21
Again, differentiating w.r.t. x, we get dx2d2y=0+y32dxdy ⇒dx2d2y=y32⋅dxdy but given, dx2d2y=f(y)dxdy
On comparing, we get f(y)=y32