Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If xy=ex-y then (dy/dx) is equal to
Q. If
x
y
=
e
x
−
y
then
d
x
d
y
is equal to
4697
206
KCET
KCET 2016
Continuity and Differentiability
Report Error
A
l
o
g
(
x
−
y
)
l
o
g
x
21%
B
x
x
−
y
e
x
22%
C
(
1
+
l
o
g
x
)
2
l
o
g
x
45%
D
y
1
−
x
−
y
1
13%
Solution:
We have,
x
y
=
e
x
−
y
Taking log on both sides, we get
y
lo
g
x
=
x
−
y
[
∵
lo
g
e
=
1
]
⇒
y
lo
g
x
+
y
=
x
⇒
y
=
1
+
l
o
g
x
x
On differentiating both sides w.r.t.
x
, we get
d
x
d
y
=
(
1
+
l
o
g
x
)
2
(
1
+
l
o
g
x
)
(
1
)
−
x
(
x
1
)
=
(
1
+
l
o
g
x
)
2
1
+
l
o
g
x
−
1
=
(
1
+
l
o
g
x
)
2
l
o
g
x