Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (x+y)2 (dy/dx)=a2, y=0 when x = 0, then y = a if (x/a)=
Q. If
(
x
+
y
)
2
d
x
d
y
=
a
2
,
y
=
0
when
x
=
0
, then
y
=
a
if
a
x
=
3361
209
Differential Equations
Report Error
A
1
50%
B
t
an
1
50%
C
t
an
1
+
1
0%
D
t
an
1
−
1
0%
Solution:
Substitute
x
+
y
=
z
⇒
d
x
d
y
=
d
x
d
z
−
1
So, the given equation becomes
d
x
d
z
−
1
=
z
2
a
2
⇒
d
x
d
z
=
z
2
a
2
+
z
2
⇒
a
2
+
z
2
z
2
d
z
=
d
x
⇒
x
+
c
=
z
−
a
t
a
n
−
1
(
a
z
)
⇒
a
t
a
n
−
1
(
a
x
+
y
)
=
y
−
c
x
=
0
,
y
=
0
⇒
c
=
0
⇒
a
y
=
t
a
n
−
1
(
a
x
+
y
)
∴
y
=
a
⇒
1
=
t
a
n
−
1
(
a
x
+
1
)
⇒
a
x
=
t
an
1
−
1
.