Q.
If x+y+2=0, then, the value of 3[yzx2+zxy2+xyz2], is: ____
77
138
Polynomials, LCM and HCF of Polynomials
Report Error
Answer: 9
Solution:
We have, x+y+2=0 (Given) ...(1) Now, 3[yzx2+zxy2+xyz2] =3[yzx2×xx+zxy2×yy+xyz2×zz] =3[xyzx3+xyzy3+xyzz3] =3[xyzx3+y3+z3]....(2)
Also,
We know that x3+y3+z3−3xyz =(x+y+z)(x2+y2+z2−xy−yz−zx) ⇒x3+y3+z3−3xyz=0 (From equation (1)) ⇒x3+y3+z3=3xyz...(3)
Putting value of equation (3) in equation (2) 3[xyz3xyz]=3×3=9