Q.
If x=sintcos2t and y=costsin2t, then at t=4π, the value of dxdy is equal to :
3012
182
Continuity and Differentiability
Report Error
Solution:
Let x=sintcos2t and y=cost.sin2t
Differentiate both w.r.t 't' dtdx=costcos2t=2sint.sin2t and dtdy=2cost.cos2t−sin2t.sint
Now, dtdy=dxdtdydt=cost.cos2t−2sint.sin2t2cost.cos2t−sin2t.sint
Put t=4π,dxdy=cos4π.cos2π−2sin4π.sin2π2cos4π.cos2π−sin2π.sin4π −2(21)2−1=212121=21