Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x is so small that x2 and higher powers of x may be neglected, then the approximate value of ((1+(2/3) x)-3(1-15 x)-1 / 5/(2-3 x)4) is
Q. If
x
is so small that
x
2
and higher powers of
x
may be neglected, then the approximate value of
(
2
−
3
x
)
4
(
1
+
3
2
x
)
−
3
(
1
−
15
x
)
−
1/5
is
1563
233
TS EAMCET 2015
Report Error
A
8
1
(
1
+
7
x
)
B
16
1
(
1
−
7
x
)
C
1
−
7
x
D
16
1
(
1
+
7
x
)
Solution:
We have,
(
1
+
3
2
x
)
−
3
(
1
−
15
x
)
−
1/5
=
2
4
(
1
−
2
3
x
)
4
(
1
+
3
2
x
)
−
3
(
1
−
15
x
)
−
1/5
=
16
(
1
+
3
2
x
)
−
3
(
1
−
15
x
)
−
1/5
(
1
−
2
3
x
)
−
4
=
16
1
(
1
−
2
x
)
(
1
+
3
x
)
(
1
+
6
x
)
[
∵
neglecting higher powers
]
=
16
1
(
1
+
x
)
(
1
+
6
x
)
=
16
1
(
1
+
7
x
)