133
160
Complex Numbers and Quadratic Equations
Report Error
Solution:
Given, x−iy=c−ida−ib ⇒x+i(−y)=(c−ida−ib)1/2
Taking modulus both sides, we get ∣x+i(−y)∣=∣∣(c−ida−ib)21∣∣ ⇒x2+(−y)2=∣∣c−ida−ib∣∣21(∵∣x+iy∣=x2+y2and∣zn∣=∣z∣n) ⇒x2+y2=∣∣c−ida−ib∣∣21
Squaring both sides, we get x2+y2=∣∣c−ida−ib∣∣ ⇒x2+y2=∣c−id∣∣a−ib∣(∵∣∣z2z1∣∣=∣z2∣∣z1∣) ⇒(x2+y2)=c2+d2a2+b2(∵∣x−iy∣=x2+y2)
Squaring both sides, we get (x2+y2)2=c2+d2a2+b2