2394
195
J & K CETJ & K CET 2012Continuity and Differentiability
Report Error
Solution:
Given, xexy=y+sin2x ..(i)
On differentiating w. r. t .x, we get exy+xexy(y+xdxdy)=dxdy+2sinxcosx ..(ii)
On putting x=0, in Eq. (i), we get 0(e0×y)=y+sin2(0) ⇒0=y+0⇒y=0 ∴ At point (0,0), from Eq. (ii), <br>e0+0e0(0+0dxdy)=dxdy+2sin0cos0 ⇒1+0=dxdy+0 ⇒dxdy=1