Q.
If x=etcost and y=etsint, then what is dydx at t=0 equal to?
2585
256
Continuity and Differentiability
Report Error
Solution:
Given that, x=etsint, y=etcost…(i)
At point (1,1), 1=etsint
and 1=etcost ⇒tant=1 ⇒t=4π
On differentiating (i)w.r.t. t, we get dtdy=et(cost−sint)
and dtdx=et(sint+cost) ∴dxdy=dx/dtdy/dt =cost+sintcost−sint dxdy∣∣(1,1)=cos4π+sin4πcos4π−sin4π =21+2121−21=0