On differentiating w.r.t. t respectively, we get dtdx=etcost+sintet
and dtdy=−etsint+etcost ∴dxdy=dx/dtdy/dt=et(cost+sint)et(cost−sint) =cost+sintcost−sint
Again differentiating, we get dx2d2y=(cost+sint)2[(cost+sint)(−sint+cost)−(cost+sint)(−sint+cost)]dxdt =(cost+sint)2−(sint+cost)2−(cost−sint)2 ×et(cost+sint)1 =−[et(cost+sint)3sin2t+cos2t+2sintcost+cos2t+sin2t−2sintcost] =−et(cost+sint)32 ⇒(dx2d2y)(x=π) =eπ(cosπ+sinπ)3−2