Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x dy -y dx + x cos ln x dx = 0, y(1) = 1, then y(e) =
Q. If
x
d
y
−
y
d
x
+
x
cos
l
n
x
d
x
=
0
,
y
(
1
)
=
1
, then
y
(
e
)
=
4017
184
Differential Equations
Report Error
A
e
(
1
−
cos
1
)
30%
B
e
(
1
−
s
in
1
)
50%
C
e
(
1
+
cos
1
)
10%
D
e
(
1
+
s
in
1
)
10%
Solution:
x
2
x
d
y
−
y
d
x
+
x
cos
l
n
x
d
x
=
0
⇒
d
x
d
(
x
y
)
+
d
x
d
(
s
in
l
n
x
)
=
0
On integration, we get
x
y
+
s
in
l
n
x
=
c
x
=
1
,
y
=
1
⇒
c
=
1
x
=
e
⇒
y
=
e
(
1
−
s
in
1
)
.