Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x. (dy/dx) + y = x. (f(xy)/f'(xy)), then f(xy) is equal to
Q. If
x
.
d
x
d
y
+
y
=
x
.
f
′
(
x
y
)
f
(
x
y
)
, then
f
(
x
y
)
is equal to
3155
220
VITEEE
VITEEE 2014
Report Error
A
k
.
e
2
x
2
B
k
.
e
2
y
2
C
k
.
e
x
2
D
k
.
e
2
x
y
Solution:
Given,
x
.
d
x
d
y
+
y
=
x
.
f
′
(
x
y
)
f
(
x
y
)
i.e.,
d
x
d
(
x
y
)
=
x
f
′
(
x
,
y
)
f
(
x
,
y
)
⇒
f
(
x
y
)
f
′
(
x
y
)
d
(
x
y
)
=
x
d
x
⇒
∫
f
(
x
y
)
f
′
(
x
y
)
d
(
x
y
)
=
∫
x
d
x
⇒
lo
g
[
f
(
x
y
)
]
=
2
x
2
+
C
⇒
f
(
x
y
)
=
e
(
x
2
2
+
C
)
=
e
2
x
2
e
C
=
k
.
e
2
x
2