Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x (dy/dx)=y (log y-log x+1), then the solution of the equation is:
Q. If
x
d
x
d
y
=
y
(
l
o
g
y
−
l
o
g
x
+
1
)
,
then the solution of the equation is:
2111
228
AIEEE
AIEEE 2005
Differential Equations
Report Error
A
l
o
g
(
y
x
)
=
cy
6%
B
l
o
g
(
x
y
)
=
c
x
58%
C
x
l
o
g
(
x
y
)
=
cy
27%
D
y
l
o
g
(
y
x
)
=
c
x
9%
Solution:
x
d
x
d
y
=
y
(
l
o
g
y
−
l
o
g
y
+
1
)
∴
d
x
d
y
=
(
x
y
)
(
l
o
g
(
x
y
)
+
1
)
Now put
x
y
=
t
⇒
y
=
t
x
⇒
d
x
d
y
=
t
+
x
d
x
d
t
∴
t
+
x
d
x
d
t
=
t
l
o
g
t
+
t
⇒
t
l
o
g
t
d
x
=
x
d
t
⇒
t
l
o
g
t
d
t
=
x
d
x
⇒
l
o
g
(
x
y
)
=
c
x