Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x=α satisfies the equation sin -1 x+ cos -1 x2+(π/2)=0, then the value of ( sec -1 α- tan -1 α/ cot -1 α- operatornamecosec-1 α) is equal to
Q. If
x
=
α
satisfies the equation
sin
−
1
x
+
cos
−
1
x
2
+
2
π
=
0
, then the value of
c
o
t
−
1
α
−
cosec
−
1
α
s
e
c
−
1
α
−
t
a
n
−
1
α
is equal to
1440
124
Inverse Trigonometric Functions
Report Error
A
0
B
1
C
-1
D
π
Solution:
∵
sin
−
1
x
+
cos
−
1
x
2
+
2
π
=
0
⇒
2
π
+
sin
−
1
x
=
−
cos
−
1
x
2
⇒
cos
(
2
π
+
sin
−
1
x
)
=
cos
(
−
cos
−
1
x
2
)
⇒
−
x
=
x
2
⇒
x
=
0
,
−
1
(
x
=
0
rejected
)
∴
x
=
−
1
=
α
∴
Given expression
=
c
o
t
−
1
(
−
1
)
−
cosec
−
1
(
−
1
)
s
e
c
−
1
(
−
1
)
−
t
a
n
−
1
(
−
1
)
=
4
3
π
−
(
2
−
π
)
π
−
(
4
−
π
)
=
4
5
π
4
5
π
=
1