Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x=a cos 3 θ and y=a sin 3 θ, then 1+((d y/d x))2 is
Q. If
x
=
a
cos
3
θ
and
y
=
a
sin
3
θ
, then
1
+
(
d
x
d
y
)
2
is
1829
219
KEAM
KEAM 2014
Report Error
A
tan
θ
B
tan
2
θ
C
1
D
sec
2
θ
E
sec
θ
Solution:
Given,
x
=
a
cos
3
θ
and
y
=
a
sin
3
θ
On differentiating both sides w.r.t.
θ
, we get
d
θ
d
x
=
3
a
cos
2
θ
(
−
sin
θ
)
and
d
θ
d
y
=
3
a
sin
2
θ
(
cos
θ
)
Now,
d
x
/
d
θ
d
y
/
d
θ
=
3
a
c
o
s
2
θ
(
−
s
i
n
θ
)
3
a
s
i
n
2
θ
(
c
o
s
θ
)
⇒
d
x
d
Y
=
−
tan
θ
∴
1
+
(
d
x
d
y
)
2
=
1
+
(
−
tan
θ
)
2
=
1
+
tan
2
θ
=
sec
2
θ