Q.
If x=a+bω+cω2,y=aω+bω2+c&z=aω2+b+cω then the value of yzx2+xzy2+xyz2 equals
2423
197
Complex Numbers and Quadratic Equations
Report Error
Solution:
From the given, we have x+y+z−(a+bω+cω2)+(aω+bω2+c) +(aω2+b+cω) ⇒x+y+z=a(1+ω+ω2)+b(1+ω+cω2) +c(1+ω+ω2)=0 ⇒x3+y3+z3=3xyz ⇒xyzx3+y3+z3=3 or yzx2+xzy2+xyz2=3