Given that, x=a(1+cosθ) ...(i) and y=a(θ+sinθ) ...(ii) Differentiating Eqs. (i) and (ii) w.r.t. θ, we get dθdx=−asinθ ...(iii) and dθdy=a+acosθ ...(iv)
Dividing Eq. (iii) by Eq. (iv), we get dθdy/dθdx=−asinθa(1+cosθ) ⇒dxdy=−sinθ1+cosθ =−2sin2θcos2θ1+2cos22θ−1=−sin2θcos2θ =−cot2θ ∴dx2d2y=cosec22θ.21dxdθ =−21a1sinθcosec22θ ∴(dx2d2y)θ=2π=−a1