We have, x5+x2x5−5=f(x)+xA+x2B+x+1C x3+x2x5−5=x2−x+1+x3+x2−x2−5 ∴x3+x2−x2−5=xA+x2B+x+1C −x2−5=Ax(x+1)+B(x+1)+C(x2) −x2−5=(A+C)x2+(A+B)x+B A+C=−1,A+B=0,B=−5
Solving we get, A=5,B=−5,C=−6 ∴f(x)=x2−x+1 ∴f(K)=K2−K+1
Given, f(K)+A+B+C=1 K2−K+1+5−5−6=1 ⇒K2−K−6=0 ⇒(K+2)(K−3)=0 ⇒K=3,−2
Largest value of K=3