Given, x=4cos3θ.....(i)
and y=3sin2θ.......(ii)
and y=3sin2θ…
Differentiating Eq. (i) and Eq. (ii) w. r. t. tθ dθdx=4×3cos2θ(−sinθ) =−12cos2θsinθ......(iii)
and dθdy=3×2sinθcosθ =6sinθcosθ.....(iv)
Now, dxdy=dθdxdθdy =−21secθ[ by Eqs. (iii) and (iv)]
So, dx2d2y=−21secθtanθ.dxdθ =−21×secθtanθ×12cos2θsinθ−1[ by Eq. (iii) ] =241×cosθ1×cosθsinθ×cos2θsinθ1 =24(cosθ)41=24(cos4π)41(∵θ=4π) =241×(21)41=241×4=61