Given that x2y−x3dxdy=y4cosx
On dividing by y4, we get y3x2−y4x3dxdy=cosx ⇒y4x3dxdy=y3x2−cosx ⇒y41dxdy−xy31=−x31cosx
Let −y31=t ⇒y41dxdy=31⋅dxdt ⇒31⋅dxdt+x1t=x31cosx ⇒dxdt+x3t=x33cosx
This is a linear differential equation in t,
on comparing with dxdt+Pt=Q, we get P=x3,Q=x33cosx ∴ I.F. =e∫Pdx=e∫x3dx=elogx3=x3 ∴ Complete solution is tx3=3∫x3x3cosxdx+c1 ⇒tx3=3sinx+c1 ⇒−y31x3=3sinx+c1 ⇒y−3x3=−3sinx+c