Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x2+y2-a2+λ(x cos α +y sin α-p)=0 is the smallest circle through the points of intersection of x2+y2=a2 and x cos α +y sin α=p, 0<p<a, then λ=
Q. If
x
2
+
y
2
−
a
2
+
λ
(
x
cos
α
+
y
sin
α
−
p
)
=
0
is the smallest circle through the points of intersection of
x
2
+
y
2
=
a
2
and
x
cos
α
+
y
sin
α
=
p
,
0
<
p
<
a
, then
λ
=
1542
198
TS EAMCET 2020
Report Error
A
1
B
-p
C
-2p
D
-3p
Solution:
Equation of circle
x
2
+
y
2
−
a
2
+
λ
(
x
cos
α
+
y
sin
α
−
p
)
=
0
is the smallest circle, then centre
(
2
−
λ
c
o
s
α
,
2
−
λ
s
i
n
α
)
lies on the line
x
cos
α
+
y
sin
α
=
p
....(i)
∴
Put centre in the line (i), then we getting
2
−
λ
c
o
s
2
α
−
2
λ
s
i
n
2
α
=
p
⇒
2
−
λ
=
p
⇒
λ
=
−
2
p