Given that, ∣∣xx2x2xxx66∣∣=ax4+bx3+cx2+dx+e ⇒x(6x−6x)−2(6x2−6x)+x(x3−x2) =ax4+bx3+cx2+dx+e ⇒−12x2+12x+x4−x3=ax4+bx3+cx2+dx+e ⇒x4−x3−12x2+12x=ax4+bx3+cx2+dx+e
On equating the coefficient of both sides, we get a=1,b=−1,c=−12,d=12,e=0 ∴5a+4b+3c+2d+e=5×1+4×(−1)+3(−12) +2(12)+0 =5−4−36+24 =29−40=−11