We have, Σx1=sin2β,Σx1x2=cos2βΣx1x2x3=cosβ and x1x2x3x4=−sinβ∴tan−1x1+tan−1x2+tan−1x3+tan−1x4=tan−1(1−Σx1x2+x1x2x3x4Σx1−Σx1x2x3)=tan−1(1−cos2β−sinβsin2β−cosβ)=tan−1(sinβ(2sinβ−1)(2sinβ−1)cosβ)=tan−1(cotβ)=tan−1[tan(2π−β)]=2π−β