Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x+(1/x)=1 and p=x1000+(1/x1000) and q be the digit at unit place in the number 22n+1, n ∈ N and n>1, then p+q=
Q. If
x
+
x
1
=
1
and
p
=
x
1000
+
x
1000
1
and
q
be the digit at unit place in the number
2
2
n
+
1
,
n
∈
N
and
n
>
1
, then
p
+
q
=
2162
236
Binomial Theorem
Report Error
A
8
B
6
C
7
D
0
Solution:
x
+
x
1
=
1
⇒
x
2
−
x
+
1
=
0
⇒
x
=
2
1
±
3
i
⇒
x
=
−
ω
,
−
ω
2
Now,
p
=
ω
1000
+
ω
1000
1
=
(
ω
3
)
333
⋅
ω
+
(
ω
3
)
333
⋅
ω
1
=
ω
+
ω
1
=
ω
+
ω
2
=
−
1
Similarly, for
x
=
−
ω
2
, also
p
=
−
1
For
n
>
1
,
2
n
=
4
k
,
k
∈
N
∴
2
2
n
=
2
4
k
=
(
16
)
k
=
a number with last digit
=
6
∴
q
=
(
the digit at unit place in
2
2
n
)
+
1
=
6
+
1
=
7
∴
p
+
q
=
7
+
(
−
1
)
=
6