Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (x+(1/x)+1)6=a0+(a1 x+(b1/x))+(a2 x2+(b2/x2))+ ldots ldots+(a6 x6+(b6/x6)), then
Q. If
(
x
+
x
1
+
1
)
6
=
a
0
+
(
a
1
x
+
x
b
1
)
+
(
a
2
x
2
+
x
2
b
2
)
+
……
+
(
a
6
x
6
+
x
6
b
6
)
, then
445
88
Binomial Theorem
Report Error
A
a
0
=
141
B
a
5
=
6
C
i
=
1
∑
6
(
a
i
+
b
i
)
=
588
D
i
=
1
∑
6
(
a
i
+
b
i
)
=
3
6
Solution:
(
x
+
x
1
+
1
)
6
=
r
=
1
∑
6
6
C
r
(
x
+
x
1
)
r
(A)
a
0
=
1
+
6
C
2
⋅
2
C
1
+
6
C
4
⋅
4
C
2
+
6
C
6
⋅
6
C
3
=
1
+
30
+
90
+
20
=
141
.
(B)
a
5
=
6
C
5
⋅
coefficient of
x
5
in
(
x
+
x
1
)
5
=
6
C
5
⋅
5
C
0
=
6
(C) Putting
x
=
1
a
0
+
(
a
1
+
b
1
)
+
(
a
2
+
b
2
)
+
……
+
(
a
6
+
b
6
)
=
3
6
∴
i
=
1
∑
6
(
a
i
+
b
i
)
=
3
6
−
141
=
588