Q.
If x=1+t21−t2 and y=1+t22t , then dxdy is equal to:
3163
212
Continuity and Differentiability
Report Error
Solution:
Let x=1+t21−t2 and y=1+t22t
Put t=tanθ, we get x=1+tan2θ1−tan2θ and y=1+tan2θ2tanθ ⇒x=cos2θ and y=sin2θ ∴dθdx=−2sin2θ and dθdy=2cos2θ
Now, dxdy=dθdy×dxdθ=−sin2θcos2θ=−yx