We have, x=51+5⋅101⋅3+5⋅10⋅51⋅3⋅5+⋯ =51+2×11⋅3(51)2+3×2×11⋅3⋅5(51)3+⋯ =51+2!1⋅3(51)2+3!1⋅3⋅5(51)3+⋯
On adding 1 both sides, we get 1+x=1+51+2!1⋅3(51)2+3!1⋅3⋅5(51)3+⋯
Now, (1−52)−1/2=1+51+2!1⋅3(51)2+3!1⋅3⋅5(51)3+… ⇒1+x=(1−52)−1/2⇒1+x=(53)−1/2 ⇒1+x=(35)1/2
On squaring both sides, we get (1+x)2=35 ⇒1+2x+x2=35 ⇒3+6x+3x2=5 ⇒3x2+6x=2