Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If u= sin -1((x2+y2/x+y)) then x ( partial u/ partial x)+y ( partial u/ partial y) is equal to :
Q. If
u
=
sin
−
1
(
x
+
y
x
2
+
y
2
)
then
x
∂
x
∂
u
+
y
∂
y
∂
u
is equal to :
3829
222
EAMCET
EAMCET 2006
Report Error
A
sin
u
B
tan
u
C
cos
u
D
cot
u
Solution:
u
=
sin
−
1
(
x
+
y
x
2
+
y
2
)
Here
u
is not a homogeneous function.
But
f
(
x
,
y
)
=
sin
u
=
x
+
y
x
2
+
y
2
is a homogeneous
function of degree one.
Here by Euler's theorem
x
∂
x
∂
f
+
y
∂
y
∂
f
=
f
⇒
x
∂
x
∂
(
sin
u
)
+
y
∂
y
∂
(
sin
u
)
=
sin
u
⇒
x
cos
u
∂
x
∂
u
+
y
cos
u
∂
y
∂
u
=
sin
u
⇒
x
∂
x
∂
u
+
y
∂
y
∂
u
=
tan
u