Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If two distinct point Q , R lie on the line of intersection of the planes - x +2 y - z =0 and 3 x-5 y+2 z=0 and P Q=P R=√18 where the point P is (1,-2,3), then the area of the triangle PQR is equal to
Q. If two distinct point
Q
,
R
lie on the line of intersection of the planes
−
x
+
2
y
−
z
=
0
and
3
x
−
5
y
+
2
z
=
0
and
PQ
=
PR
=
18
where the point
P
is
(
1
,
−
2
,
3
)
, then the area of the triangle
PQR
is equal to
1002
165
JEE Main
JEE Main 2022
Three Dimensional Geometry
Report Error
A
3
2
38
B
3
4
38
C
3
8
38
D
3
152
Solution:
−
x
+
2
y
−
z
=
0
3
x
−
5
y
+
2
z
=
0
n
=
∣
∣
i
^
−
1
3
j
^
2
−
5
k
^
−
1
2
∣
∣
=
i
^
(
−
1
)
−
j
^
(
1
)
+
k
^
(
−
1
)
n
=
−
i
^
−
j
^
−
k
^
Equation of LOI is
1
x
=
1
y
=
1
z
DR: of PT
→
α
−
1
,
α
+
2
,
α
−
3
D
R
:
of
QR
→
1
,
1
,
1
⇒
(
α
−
1
)
×
1
+
(
α
+
2
)
×
1
+
(
α
−
3
)
×
1
=
0
3
α
=
2
α
=
3
2
P
T
2
=
9
1
+
9
64
+
9
49
P
T
2
=
9
114
PT
=
3
114
cos
θ
=
3
114
×
3
2
1
=
9
57
=
3
×
3
19
×
3
=
3
3
19
cos
2
θ
=
27
2
×
19
−
1
=
27
11
sin
2
θ
=
1
−
(
27
11
)
2
=
27
38
16
=
27
4
38
Area
=
2
1
×
18
18
×
27
4
38
=
2
18
×
27
4
38
=
27
36
38
=
3
4
38