sin(θ+α)=ksin2θ sinθcosα+cosθsinα=2ksinθcosθ
Change the equation in tan2θ form and let tan2θ=t, then obtained equation is sinαt4−(2cosα+4k)t3+t(4k−2cosα)−sinα=0S1=sinα2cosα+4k,S2=0 S3=sinα4k−2cosα,S4=−1 tan2(θ1+θ2+θ3+θ4)=1−S2+S4S1−S3=∞ ⇒2θ1+θ2+θ3+θ4=(2n+1)2π ⇒θ1+θ2+θ3+θ4=(2n+1)π,n∈ integer