Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the value of the definite integral ∫ limitsπ / 6π / 4 (1+ cot x/ex sin x) d x, is equal to a e-π / 6+b e-π / 4 then (a+b) equals
Q. If the value of the definite integral
π
/6
∫
π
/4
e
x
s
i
n
x
1
+
c
o
t
x
d
x
, is equal to
a
e
−
π
/6
+
b
e
−
π
/4
then
(
a
+
b
)
equals
103
90
Integrals
Report Error
A
2
−
2
B
2
+
2
C
2
2
−
2
D
2
3
−
2
Solution:
π
/6
∫
π
/4
e
−
x
(
cosec
x
+
cot
x
cosec
x
)
d
x
;
put
−
x
=
t
;
d
x
=
−
d
t
−
−
π
/6
∫
−
π
/4
e
t
(
−
cosec
(
t
)
+
cot
(
t
)
⋅
cosec
(
t
))
d
t
=
−
π
/6
∫
−
π
/4
e
t
(
cosec
(
t
)
−
cot
(
t
)
⋅
cosec
(
t
))
d
t
=
e
t
cosec
(
t
)
−
π
/6
−
π
/4
=
−
2
e
−
4
π
+
2
e
−
6
π
⇒
2
e
−
6
π
−
2
e
−
4
π
⇒
a
+
b
=
2
−
2