I=0∫2π2+sin2xdx=20∫π2+sin2xdx....(1) (As period of function 2+sin2x=π )
Also, I=20∫π2−sin2xdx...(2)
(Using ∫abf(x)dx=a∫bf(a+b−x)dx ) ∴ On adding (1) and (2), we get 2I=20∫π4−sin22x4dx (Put 2x=t⇒dx=2dt ) 2I=40∫2π4−sin2tdt=80∫π4−sin2tdt=160∫π/24−sin2tdt ⇒I=80∫π/24−sin2tdt=80∫π/23+cos2xdx
Hence k=8