Q.
If the tangents drawn at the point O(0,0) and P(1+5,2) on the circle x2+y2−2x−4y=0 intersect at the point Q, then the area of the triangle OPQ is equal to
Tangent at O −(x+0)−2(y+0)=0 ⇒x+2y=0
Tangent at P x(1+5)+y⋅2−(x+1+5)−2(y+2=0)
Put x=−2y −2y(1+5)+2y+2y−1−5−2y−4=0 −25y=5+5 ⇒y=(25+1) Q(5+1,−25+1)
Length of tangent OQ=25+5
Area =R2+L2RL3 R=5 =5+(25+5)25×(25+5)3 =25×(20+25+105+5)4×(125+75+755+55) =25+35