Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the tangent to the curve y=(x/x2-3), x ∈ R, (x ≠ ±√3), at a point (α, β) ≠ (0,0) on it is parallel to the line 2x+6y-11=0, then calculate |6 α+2 β|
Q. If the tangent to the curve
y
=
x
2
−
3
x
,
x
∈
R
,
(
x
=
±
3
)
, at a point
(
α
,
β
)
=
(
0
,
0
)
on it is parallel to the line
2
x
+
6
y
−
11
=
0
, then calculate
∣6
α
+
2
β
∣
2122
203
Application of Derivatives
Report Error
Answer:
19
Solution:
Given curve is,
y
=
x
2
−
3
x
⇒
d
x
d
y
=
(
x
2
−
3
)
2
(
x
2
−
3
)
−
x
(
2
x
)
=
(
x
2
−
3
)
2
−
x
2
−
3
d
x
d
y
∣
(
α
,
β
)
=
(
α
2
−
3
)
2
α
2
−
3
=
−
6
2
=
−
3
1
3
(
α
2
+
3
)
=
(
α
2
−
3
)
2
⇒
α
2
=
9
And,
β
=
a
2
−
3
x
⇒
α
2
−
3
=
β
α
⇒
β
α
=
6
⇒
a
=
±
3
,
β
=
±
2
1
These values of
α
and
β
satisfies
∣
6
α
+
2
β
∣
=
19