y2=x(2−x)2 ⇒y2=x3−4x2+4x⋯(1) ⇒2ydxdy=3x2−8x+4 ⇒dxdy=2y3x2−8x+4 ⇒[dxdy]p=23−8+4=21 ∴ Equation of tangent at P is y=1=−21(x−1) ⇒x+2y−3=0⋯(2)
Using y=23−x in (1), we get (23−x)2=x2−4x2+4x ⇒9+x2−6x=4x3−16x2+16x ⇒4x3−17x2+22x−9=0
which has two roots 1,1 (Because of (2) being tangentat (1,1)).
Sum of 3 roots =417 ⇒3rd root =417−2=49
Then, y=23−49=83 ∴Q is (49,83).