Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the sum of the first n terms of the series √3 + √75 + √243 + √507 + .... is 435 √3, then n equals :
Q. If the sum of the first n terms of the series
3
+
75
+
243
+
507
+
....
i
s
435
3
, then
n
equals :
2214
215
JEE Main
JEE Main 2017
Sequences and Series
Report Error
A
18
25%
B
15
43%
C
13
20%
D
29
12%
Solution:
3
[
1
+
25
+
81
+
69
+
......
]
=
435
3
3
[
1
+
5
+
9
+
13
+
.....
T
n
]
=
435
3
=
3
×
2
n
[
2
+
(
n
−
1
)
4
]
=
435
3
2
n
+
4
n
2
−
4
n
=
870
<
b
r
/
>=
4
n
2
−
2
n
−
870
=
0
=
2
n
2
−
n
−
435
=
0
n
=
4
1
±
1
+
4
×
2
×
435
=
4
1
±
59
=
4
1
+
59
=
4
;
4
1
−
59