Given, Sn=3n2+5n ∴Sm=3m2+5m and Sm−1=3(m−1)2+5(m−1)
Now, using the formula Tm=Sm−Sm−1, we have Tm=(3m2+5m)−[3(m−1)2+5(m−1)] =(3m2+5m)−[3(m2+1−2m)+5m−5] =(3m2+5m)−[3m2+3−6m+5m−5] =3m2+5m−3m2−3+6m−5m+5=6m+2
But given, Tm=164 ∴6m+2=164 ⇒6m=164−2 ⇒6m=162 ⇒m=6162=27