Let a and d be the first term and common difference of an A.P. ∵ Sum of the first p terms = Sum of first q terms ∴Sp=Sq ⇒2p[2a+(p−1)d]=2q[2a+(q−1)d] {∵Sn=2n[2a+(n−1)d]} ⇒p[2a+(p−1)d]=q[2a+(q−1)d] ⇒2ap+p(p−1)d=2aq+q(q−1)d ⇒2ap−2aq=q(q−1)d−p(p−1)d ⇒2a(p−q)=d[q2−q−p2+p] ⇒2a(p−q)=d[(p−q)+(q2−p2)] ⇒2a(p−q)=d[(p−q)+(q−p)(q+p)] ⇒2a(p−q)=d(p−q)[1−(p+q)] ⇒2a=d[1−(p+q)] ⇒2a=−d[(p+q)−1] ⇒2a+d(p+q−1)=0.....(i)
Now, Sp+q=2p+q[2a+[p+q−1]d] =2p+q×0 [from Eq. (i)] =0