y=x+1 touches the parabola y2=ax ∴1=4⋅1a⇒a=4{Θc=ma}
Point of contact is (m2a,m2a)≡(1,2)
Now, normal at ' p ' is x+y+λ=0
Satisfying (1,2), get λ=−3 ∴x+y−3=0
Centre of the circle (−2,d) lies on the above normal ∴d=5 r= distance between (−2,5) and (1,2) =9+9=18 ∴r2=18 ∴9r2+d+a=918+5+4=3