Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the solution set of inequality ( textcosec-1 x)2-2 textcosec-1 x ≥ (π/6)( textcosec-1 x-2) is (-∞, m] ∪[n, ∞) then (m+n) equals
Q. If the solution set of inequality
(
cosec
−
1
x
)
2
−
2
cosec
−
1
x
≥
6
π
(
cosec
−
1
x
−
2
)
is
(
−
∞
,
m
]
∪
[
n
,
∞
)
then
(
m
+
n
)
equals
312
155
Inverse Trigonometric Functions
Report Error
Answer:
1
Solution:
λ
2
−
2
λ
≥
6
π
(
λ
−
2
)
, where
λ
=
cosec
−
1
x
(
λ
−
2
)
⋅
(
λ
−
6
π
)
≥
0
∴
x
∈
(
−
∞
,
−
1
]
∪
[
2
,
∞
)
⇒
m
=
−
1
,
n
=
2
So,
(
m
+
n
)
=
1