Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the solution curve of the differential equation (( tan -1 y)-x) d y=(1+y2) d x passes through the point (1,0) then the abscissa of the point on the curve whose ordinate is tan (1) is :
Q. If the solution curve of the differential equation
(
(
tan
−
1
y
)
−
x
)
d
y
=
(
1
+
y
2
)
d
x
passes through the point
(
1
,
0
)
then the abscissa of the point on the curve whose ordinate is
tan
(
1
)
is :
175
178
JEE Main
JEE Main 2022
Differential Equations
Report Error
A
2
e
B
e
2
C
2
D
e
1
Solution:
d
y
d
x
+
1
+
y
2
x
=
1
+
y
2
t
a
n
−
1
y
I.f
=
e
∫
1
+
y
2
1
d
y
=
e
t
a
n
−
1
y
x
e
t
a
n
−
1
y
=
∫
1
+
y
2
t
a
n
−
1
y
e
t
a
n
−
1
y
d
y
x
⋅
e
t
a
n
−
1
y
=
(
tan
−
1
y
−
1
)
e
t
a
n
−
1
y
+
c
∴
(
1
,
0
)
lies exit
c
=
2
.
For
y
=
tan
1
⇒
x
=
e
2