We have, y=b−xax ⇒dxdy=(b−x)2(b−x)a−ax⋅(−1)=(b−x)2ab ∴[dxdy](1,1)=(b−1)2ab=2 (given) .....(i)
Since the curve passes through the point (1,1), therefore, 1=b−1a ⇒a=b−1
On putting a=b−1 in equation (i), we get (b−1)2(b−1)b=2 ⇒b=2 ∴a=2−1=1
Hence, a=1,b=2