Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the shortest distance between the lines (x-1/2)=(y-2/3)=(z-3/λ) and (x-2/1)=(y-4/4)=(z-5/5) is (1/√3), then the sum of all possible values of λ is :
Q. If the shortest distance between the lines
2
x
−
1
=
3
y
−
2
=
λ
z
−
3
and
1
x
−
2
=
4
y
−
4
=
5
z
−
5
is
3
1
, then the sum of all possible values of
λ
is :
5587
146
JEE Main
JEE Main 2022
Three Dimensional Geometry
Report Error
A
16
48%
B
6
28%
C
12
10%
D
15
14%
Solution:
SHORTEST distance
∣
b
1
×
b
2
∣
∣
(
a
2
−
a
1
)
⋅
(
b
1
×
b
2
)
∣
a
1
=
(
1
,
2
,
3
)
a
2
=
(
2
,
4
,
5
)
b
2
=
2
i
^
+
3
j
^
+
λ
k
^
b
2
=
i
^
+
4
j
^
+
5
k
^
S.D.
=
∣
b
1
×
b
2
∣
∣
((
2
−
1
)
i
^
+
(
4
−
2
)
j
^
+
(
5
−
3
)
k
^
)
⋅
(
b
1
×
b
2
)
∣
b
1
×
b
2
=
∣
∣
i
^
2
1
j
^
3
4
k
^
λ
5
∣
∣
=
i
^
(
15
−
4
λ
)
+
j
^
(
λ
−
10
)
+
k
^
(
5
)
=
(
15
−
4
λ
)
i
^
+
(
λ
−
10
)
j
^
+
5
k
^
∣
∣
b
1
×
b
2
∣
∣
=
(
15
−
4
λ
)
2
+
(
λ
−
10
)
2
+
25
Now
S.D.
=
(
15
−
4
λ
)
2
+
(
λ
−
10
)
2
+
25
∣
(
i
^
+
2
j
^
+
2
k
^
)
⋅
[(
15
−
4
λ
)
i
^
+
(
λ
−
10
)
j
^
+
5
k
^
]
∣
(
15
−
4
λ
)
2
+
(
λ
−
10
)
2
+
25
∣15
−
4
λ
+
2
λ
−
20
+
10∣
=
3
1
square both side
3
(
5
−
2
λ
)
2
=
225
+
16
λ
2
−
120
λ
+
λ
2
+
100
−
20
λ
+
25
12
λ
2
+
75
−
60
λ
=
17
λ
2
−
140
λ
+
350
5
λ
2
−
80
λ
+
275
=
0
λ
2
−
16
λ
+
55
=
0
(
λ
−
5
)
(
λ
−
11
)
=
0
⇒
λ
=
5
,
11