Q.
If the roots of the quadratic equation mx2−nx+k=0 are tan 33∘ and tan12∘ then the value of m2m+n+k is equal to
2303
196
KEAMKEAM 2016Complex Numbers and Quadratic Equations
Report Error
Solution:
Given, quadratic equation is mx2−nx+k=0
Roots of the equation are tan33∘ and tan12∘. ∴tan33∘+tan12∘=mn…(i)
and tan33∘×tan12∘=mk…(ii)
Value of m2m+n+k is m2m+n+k=m2m+mn+mk =2+(tan33∘+tan12∘) +(tan33∘×tan12∘)…(iii)
Let (tan45∘)=tan(33∘+12∘) ⇒1=1−tan33∘tan12∘tan33∘+tan12∘ ⇒1−tan33∘tan12∘=tan33∘+tan12∘ ⇒tan33∘+tan12∘ +tan33∘×tan12∘=1…(iv)
By putting the value from Eq. (iv) into Eq. (iii) m2m+n+k=2+1=3