Given equation is x3+ax2+bx+c=0
Let (α,β,γ) be the roots of the given equation then according to given condition, we have 2β=α+γ...(i) (∵α,β,γ are in AP)
Now, α+β+γ=−a ⇒β+2β=−a(Using Eq.(i)] ⇒β=−3a
Since, β is a root of given equation.
So, β3+aβ2+bβ+c=0 ⇒(−3a)3+a(3−a)2+b(3−a)+c=0 ⇒−27a3+9a3−3ab+c=0 ⇒−a3+3a3−9ab+27c=0 ⇒2a3−9ab+27c=0 ∴2a3−9ab=−27c